Fusion of aerial images and sensor data from a ground vehicle for improved semantic mapping
نویسندگان
چکیده
This paper investigates the use of semantic information to link ground-level occupancy maps and aerial images. A ground-level semantic map is obtained by a mobile robot equipped with an omnidirectional camera, differential GPS and a laser range finder. The mobile robot uses a virtual sensor for building detection (based on omnidirectional images) to compute the ground-level semantic map, which indicates the probability of the cells being occupied by the wall of a building. These wall estimates from a ground perspective are then matched with edges detected in an aerial image. The result is used to direct a regionand boundary-based segmentation algorithm for building detection in the aerial image. This approach addresses two difficulties simultaneously: 1) the range limitation of mobile robot sensors and 2) the difficulty of detecting buildings in monocular aerial images. With the suggested method building outlines can be detected faster than the mobile robot can explore the area by itself, giving the robot an ability to “see” around corners. At the same time, the approach can compensate for the absence of elevation data in segmentation of aerial images. Our experiments demonstrate that ground-level semantic information (wall estimates) allows to focus the segmentation of the aerial image to find buildings and produce a ground-level semantic map that covers a larger area than can be built using the onboard sensors.
منابع مشابه
A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملFusion of Unmanned Aerial Vehicle Range and Vision Sensors Using Fuzzy Logic and Particles
This paper presents a novel method for fusing data from a UAV’s range and vision sensors. The range sensor is used to build an elevation map of the flying area. Fuzzy logic is used to detect red barrels in camera images. The world location of a target on the ground is found by fusing the terrain map with image data using both an extended Kalman filter and a particle filter. The target detection...
متن کاملThe Zurich Urban Micro Aerial Vehicle
This paper presents a dataset recorded on-board a camera-equipped Micro Aerial Vehicle (MAV) flying within the urban streets of Zurich, Switzerland, at low altitudes (i.e., 5-15 meters above the ground). The 2 km dataset consists of time synchronized aerial high-resolution images, GPS and IMU sensor data, ground-level street view images, and ground truth data. The dataset is ideal to evaluate a...
متن کاملPoster Abstract: Fusion Models using Unmanned Ground Vehicle
In this paper, we analyze the performance various sensor fusion models using an unmanned ground vehicle. In a given attack scenario, we examine how attacks influence on each fusion model by comparing the results of different models We conduct the experiments with real measurement data obtained from an unmanned ground vehicle. Keywords— Sensor Fusion Model; Attack; Resiliency
متن کاملSolving the SLAM Problem for Unmanned Aerial Vehicles Using Smoothed Estimates
In this paper we present a solution to the simultaneous localization and mapping (SLAM) problem for unmanned aerial vehicles (UAV) using a camera and inertial sensors. A good SLAM solution is an important enabler for autonomous robots. Our approach is based on an optimization based formulation of the problem, which results in a smoother, rather than a filter. The proposed algorithm is evaluated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotics and Autonomous Systems
دوره 56 شماره
صفحات -
تاریخ انتشار 2008